Divisors computing minimal log discrepancies on lc surfaces

نویسندگان

چکیده

Abstract Let $(X\ni x,B)$ be an lc surface germ. If $X\ni x$ is klt, we show that there exists a divisor computing the minimal log discrepancy of Kollár component . $B\not=0$ or not Du Val, any potential place This extends result Blum and Kawakita who independently showed on smooth place.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Log Discrepancies in Mori Contractions

It was conjectured by McKernan and Shokurov that for all Mori contractions from X to Y of given dimensions, for any positive ε there is a positive δ such that if X is ε-log terminal, then Y is δ-log terminal. We prove this conjecture in the toric case and discuss the dependence of δ on ε, which seems mysterious.

متن کامل

Computing Discrete Minimal Surfaces and Their Conjugates

We present a new algorithm to compute stable discrete minimal surfaces bounded by a number of Þxed or free boundary curves in R, S and H. The algorithm makes no restriction on the genus and can handle singular triangulations. For a discrete harmonic map a conjugation process is presented leading in case of minimal surfaces additionally to instable solutions of the free boundary value problem fo...

متن کامل

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

Minimal Discrepancies of Toric Singularities

The main purpose of this paper is to prove that minimal discrepancies of n-dimensional toric singularities can accumulate only from above and only to minimal discrepancies of toric singularities of dimension less than n. I also prove that some lower-dimensional minimal discrepancies do appear as such limit.

متن کامل

Minimal Discrepancies of Hypersurface Singularities

We give an upper bound for the minimal discrepancies of hypersurface singularities. As an application, we show that Shokurov’s conjecture is true for log-terminal threefolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical proceedings of the Cambridge Philosophical Society

سال: 2023

ISSN: ['0305-0041', '1469-8064']

DOI: https://doi.org/10.1017/s0305004123000051